怎么查各月新生儿数量
展开全部
这个月龄的清醒时间大概在 1 小时左右,扣除半个小时的吃奶时间,宝宝还有半个小时可以
大数据是什么意思?
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大家经常听到“大数据”这个词,仿佛带了一个“大”字我们就难以理解其中的含义。那么,大数据是什么意思呢?
大数据又称巨量数据集合,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据特点
业界将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:
一,数据体量巨大。
大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T。
二,数据类型繁多。
比如,网络日志、视频、图片、地理位置信息等等。
三,价值密度低,商业价值高。
四,处理速度快。
末尾这一点也是和传统的数据挖掘技术有着本质的不同。
移动大数据是什么意思
Big data. 以互联网和移动互联网为媒介,每天从电子商务平台,社交媒体,用户移动端等产生的海量(volume),多样化(varity)的数据,而且数据产生的速率
如何布局提升大数据能力
业务篇
1.业务为核心,数据为王
· 了解整个产业链的结构
· 制定好业务的发展规划
· 了解衡量的核心指标
有了数据必须和业务结合才有效果。
需要懂业务的整体概况,摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。
2.思考指标现状,发现多维规律
· 熟悉产品框架,全面定义每个指标的运营现状对
· 比同行业指标,挖掘隐藏的提升空间
· 拆解关键指标,合理设置运营方法来观察效果
· 争对核心用户,单独进行产品用研与需求挖掘
业务的分析大多是定性的,需要培养一种客观的感觉意识。定性的分析则需要借助技术、工具、机器。而感觉的培养,由于每个人的思维、感知都不同,只能把控大体的方向,很多数据元素之间的关系还是需要通过数据可视化技术来实现。
3.规律验证,经验总结
发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。
技能篇
1.Excel是否精钻?
除了常用的Excel函数(sum、average、if、countifs、sumifs、offset、match、index等)之外,Excel图表(饼图、线图、柱形图、雷达图等)和简单分析技能也是经常用的,可以帮助你快速分析业务走势和异常情况;另外,Excel里面的函数结合透视表以及VBA功能是完善报表开发的利器,让你一键轻松搞定报表。
2.你需要更懂数据库
常用的数据库如MySQL,Sql Server、Oracle、DB2、MongoDB等;除去SQL语句的熟练使用,对于数据库的存储读取过程也要熟练掌握。在对于大数据量处理时,如何想办法加快程序的运行速度、减少网络流量、提高数据库的安全性是非常有必要的。
3.掌握数据整理、可视化和报表制作
数据整理,是将原始数据转换成方便实用的格式,实用工具有Excel、R、Python等工具。数据可视化,是创建和研究数据的视觉表现,方便业务方快速分析数据并定位具体问题,实用工具有Tableau、FineBI、Qlikview.
如果常用excel,那需要用PPT展示,这项技能也需要琢磨透。如果用tableau、FineBI之类的工具做数据可视化,FineBI有推送查看功能,也就是在企业上下建立一套系统,通过权限的分配让不同的人看到权限范围内的报表。
4.多学几项技能
大多数据分析师都是从计算机、数学、统计这些专业而来的,也就意味着数学知识是重要基础。尤其是统计学,更是数据分析师的基本功,从数据采集、抽样到具体分析时的验证探索和预测都要用到统计学。
现在社会心理学也逐渐囊括到数据分析师的能力体系中来了,尤其是从事互联网产品运营的同学,需要了解用户的行为动向,分析背后的动机。把握了整体方向后,数据分析的过程也就更容易。
简述大数据时代网络信息具备哪些新的特点
大数据呈现出“4V+1C”的特点:(1)Variety,大数据种类繁多,在编码方式、数据格式、应用特征等多个方面存在差异性,多信息源并发形成大量的异构数据;(2)Volume,通过各种设备产生的海量数据,其数据规模极为庞大,远大于目前互联网上的信息流量,PB级别将是常态;(3)Velocity,涉及到感知、传输、决策、控制开放式循环的大数据,对数据实时处理有着极高的要求,通过传统数据库查询方式得到的“当前结果”很可能已经没有价值;(4)Vitality,数据持续到达,并且只有在特定时间和空间中才有意义;(5)Complexity,通过数据库处理持久存储的数据不再适用于大数据处理,需要有新的方法来满足异构数据统一接入和实时数据处理的需求。
大数据技术的发展趋势有哪些
云计算将为大数据带来以下发展趋势变化:
首先云计算为大数据提供了可以弹性扩展、相对便宜的存储空间和计算资源,使得中小企业也可以像亚马逊一样通过云计算来完成大数据分析。
其次,云计算IT资源庞大、分布较为广泛,是异构系统较多的企业及时准确处理数据的有力方式,甚至是唯一的方式。
数据分析集逐步扩大,企业级数据仓库将成为主流,未来还将逐步纳入行业数据、政府公开数据等多来源数据。
当人们从大数据分析中尝到甜头以后,数据分析集就会逐步扩大。目前大部分的企业所分析的数据量一般以TB为单位。按照目前数据的发展速度,很快将会进入PB时代。特别是目前在100-500TB和500+TB范围的分析数据集的数量会呈3倍或4倍增长。
大数据是指什么?如何解释?
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。
搜索下各种百科,上面都有。说白了,就是数据量非常庞大。这确实是近几年的热点问题。
大数据是什么意思?有什么用途?
大数据是统计学中的,用于指导人们的商业行为、战略觉策、未来预期的一种分析处理方法。
主要有以下三点作用:
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。